首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78305篇
  免费   6886篇
  国内免费   39篇
  2021年   896篇
  2020年   583篇
  2019年   744篇
  2018年   948篇
  2017年   903篇
  2016年   1474篇
  2015年   2447篇
  2014年   2784篇
  2013年   3828篇
  2012年   4674篇
  2011年   4846篇
  2010年   3188篇
  2009年   2891篇
  2008年   4260篇
  2007年   4370篇
  2006年   4182篇
  2005年   4144篇
  2004年   4244篇
  2003年   3841篇
  2002年   3829篇
  2001年   944篇
  2000年   681篇
  1999年   951篇
  1998年   1126篇
  1997年   785篇
  1996年   741篇
  1995年   776篇
  1994年   766篇
  1993年   708篇
  1992年   669篇
  1991年   638篇
  1990年   615篇
  1989年   661篇
  1988年   564篇
  1987年   552篇
  1986年   504篇
  1985年   636篇
  1984年   783篇
  1983年   681篇
  1982年   792篇
  1981年   826篇
  1980年   747篇
  1979年   536篇
  1978年   591篇
  1977年   564篇
  1976年   555篇
  1975年   442篇
  1974年   523篇
  1973年   474篇
  1969年   319篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
Practically all animals must find food while avoiding predators.An individual's perception of predation risk may depend on manyfactors, such as distance to refuge and group size, but it isunclear whether individuals respond to different factors ina similar manner. We tested whether flocks of foraging starlingsresponded in the same way to an increased perception of predationrisk by assessing three factors: (1) neighbor distances, (2)habitat obstruction, and (3) recent exposure to a predator.We found that in all three scenarios of increased risk, starlingsreduced their interscan intervals (food-searching bouts), whichincreased the frequency of their vigilance periods. We thenexamined how one of these factors, habitat obstruction, affectedescape speed by simulating an attack with a model predator.Starlings were slower to respond in visually obstructed habitats(long grass swards) and slower when they had their head downin obstructed habitats than when they had their head down inopen habitats. In addition, reaction times were quicker whenstarlings could employ their peripheral fields of vision. Ourresults demonstrate that different sources of increased riskcan generate similar behavioral responses within a species.The degree of visibility in the physical and social environmentaffects both the actual and perceived risk of predation.  相似文献   
55.
56.
John R. Polito 《CMAJ》2008,179(10):1037-1038
  相似文献   
57.
We previously reported that aged mice lacking complement factor H (CFH) exhibit visual defects and structural changes in the retina. However, it is not known whether this phenotype is age-related or is the consequence of disturbed development. To address this question we investigated the effect of Cfh gene deletion on the retinal phenotype of young and mid-age mice. Cfh −/− mouse eyes exhibited thickening of the retina and reduced nuclear density, but relatively normal scotopic and photopic electroretinograms. At 12 months there was evidence of subtle astroglial activation in the Cfh −/− eyes, and significant elevation of the complement regulator, decay-accelerating factor (DAF) in Müller cells. In the retinal pigment epithelium (RPE) of young control and Cfh −/− animals mitochondria and melanosomes were oriented basally and apically respectively, whereas the apical positioning of melanosomes was significantly perturbed in the mid-age Cfh −/− RPE. We conclude that deletion of Cfh in the mouse leads to defects in the retina that precede any marked loss of visual function, but which become progressively more marked as the animals age. These observations are consistent with a lifelong role for CFH in retinal homeostasis.  相似文献   
58.
59.
60.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号